## Introduction of AIS2100

## 1. New AIS2100 system

(1) Advanced H/W
(2) Upgraded S/W algorithms
2. Testing result comparison (GE specimens)
: AIS2000 and AIS2100

Prepared by
www.frontics.com

## 1. AIS2100 system

AIS2100, like AIS2000, is a portable indentation system for nondestructive evaluation of tensile properties. But AIS2100 comprises more precise hardware, upgraded algorithms and powerful attachments than AIS2000. It also gives more reliable testing results.

## (1) Advanced H/W for user convenience and better repeatability

## Enhanced precision and data repeatability

AIS2100 made the following hardware improvements from AIS2000 for user satisfaction:

- High resolution
- Better data repeatability
- Stable data transmission (minimization of noise during data communications)

| Model | AIS2000 | AIS2100 |
| :---: | :---: | :---: |
| Maximum load | 300 kgf | 300 kgf |
| Resolution (load/depth) | $300 \mathrm{gf} / 0.2 \mathrm{um}$ | $5.6 \mathrm{gf} / 0.1 \mathrm{um}$ |
| Data acquisition rate | $10 / \mathrm{sec}$ | $100 / \mathrm{sec}$ |
| Communication | RS-232C (serial port) | RS-422 (USB) $/$ <br> Wireless module |

## Maximum portability

AIS2100 enhanced portability for better efficient in-field applications.

| AIS2000 | AIS2100 |
| :---: | :---: |
| Main body | Main body |
| Additional interface box | Interface module within main body |
| Cable (3EA) | Wireless module or 1 cable |
| Laptop PC (w/SW) | Laptop PC (w/SW) |

Frontics, Inc.


AIS2100 adds on items for quick and easy testing.

- Wireless communication module or one-line communication for system control
- Remote control function
- Direct system control and monitoring from LCD panel on top of main body
- Portable battery available (10 hr)


The material in this report is confidential and any reproduction or redistribution is prohibited.

Frontics, Inc.
(2) Easy software

Maximum portability

- Accurate evaluation of tensile properties based on advanced indentation theory
- No reference test or data needed for tensile properties evaluation
- Convenient configuration of experiment conditions in SW
- Hardness evaluation available (Vickers)

※ Comparisons of H/W specification: AIS2000 vs. AIS2100

| Model |  | AIS2000 | AIS2100 |
| :---: | :---: | :---: | :---: |
| Size (weight) |  | $180 \times 180 \times 470 \mathrm{~mm}(14 \mathrm{~kg})$ | $180 \times 180 \times 430 \mathrm{~mm}$ ( 14 kg ) |
| Maximum load |  | 300 kgf | 300 kgf |
| Resolution (load / depth) |  | $300 \mathrm{gf} / 0.2 \mathrm{um}$ | $5.6 \mathrm{gf} / 0.1 \mathrm{um}$ |
| Full stroke |  | 20 mm | 40 mm |
| Loading rate |  | $0.1 \sim 6 \mathrm{~mm} / \mathrm{min}$ | 0.05~60 mm/min |
| Communication |  | RS-232C | RS-422/ wireless module |
| Data acquisition rate |  | 10/sec | 100/sec |
| Power | Adapter | AC 110 or 220 V | AC 110~220V (free voltage) |
|  | Battery | none | Portable battery (10 hrs/ charge) |
| Analysis computer | Standard | Laptop PC (w/SW) |  |
|  | Special | Rugged computer (optional) |  |
| Indenter |  | WC spherical indenter (dia. 0.5 / 1.0 mm ) Vickers, Rockwell C Indenter |  |
| Attachment tool (select or option) | Field | Multicurve magnet <br> Flat magnet <br> Lightweight mechanical chain <br> U / V-block (3/4~6 inch) dovetail slider | Multicurve magnet <br> Flat magnet <br> Lightweight mechanical chain <br> U -block (3/4~6 inch) <br> Multi-point dovetail slider |
|  | Laboratory | Precise $\mathrm{X}-\mathrm{Y}$ axis stage <br> Various vises (plate/clamping jig) |  |

## (2) Upgraded S/W algorithms

AIS2100 has the revised S/W for more accurate and reliable data results:

- Revision of contact area determination procedure considering pile-up effect dependent on indentation depth and work-hardening characteristic of a material
- Revision of yield strength determination procedure based on indentation-derived elastic modulus


Step 0 Determination of contact area

$$
a \rightarrow a_{c}
$$

Step 1 Derivation of stress-strain points

$$
\sigma=\frac{\mathrm{L}}{\pi \mathrm{a}^{2}} \frac{1}{\psi}, \varepsilon=\frac{\alpha}{\sqrt{1-(\mathrm{a} / \mathrm{R})^{2}}} \frac{\mathrm{a}}{\mathrm{R}}=\alpha \tan \gamma
$$

Step 2 Determination of flow curve

$$
\begin{array}{ll}
\sigma=K \varepsilon^{n} & \text { for BCC-type materials } \\
\sigma=A \varepsilon^{n_{1}}+B & \text { for FCC-type materials }
\end{array}
$$

Step 3 Determination of yield strength (3-1) and tensile strength (3-2)

$$
\begin{array}{lr}
\sigma_{y}=\mathbf{K}\left(\varepsilon_{\mathbf{y}}+\mathbf{b}\right)^{\mathbf{n}} & \text { yield strength } \\
\sigma_{\mathrm{UTS}}=\mathbf{K n}^{\mathbf{n}} & \text { tensile strength }
\end{array}
$$

The material in this report is confidential and any reproduction or redistribution is prohibited.
2. Testing result comparison (GE specimens) : AIS2000 and AIS2100

- Testing result Comparison

| Tensile data by GE |  |  |  | AIS2000 data |  |  |  | AIS2100 data |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | ID | $\underset{\substack{\infty \\ \sum_{>}^{0}}}{\infty}$ | $\begin{aligned} & \sum_{0}^{\infty} \\ & \stackrel{0}{5} \end{aligned}$ |  |  |  | O 6 0 0 0.0 0 1 1 5 0 0 0 0 |  |  |  |  |
| B | 201445 | 312 | 466 | 380 | 484 | 22(18.5) | 4(8.3) | 308 | 482 | -1(15.3) | 3(3.7) |
|  | 201059 | 322 | 467 | 351 | 453 | 9(5.8) | -3(5.6) | 310 | 463 | -4(12.8) | -1(11.5) |
|  | 2013922 | 349 | 464 | 345 | 451 | -1(9.6) | -3(2.4) | 325 | 471 | -7(3.8) | 2(1.5) |
| X52 | 2011211 | 384 | 525 | 409 | 519 | 7(6.81) | -1(3.9) | 414 | 544 | 8(7.1) | 4(3.2) |
|  | 201069 | 402 | 511 | 388 | 510 | -4(7.05) | 0(4) | 411 | 529 | 2(7.2) | 4(3.4) |
|  | 201657 | 422 | 486 | 385 | 484 | -9(7.89) | 0(3.8) | 423 | 504 | 0 (7) | 4(8) |
| X60 | 16755 | 426 | 532 | 385 | 507 | -10(10.65) | -5(3.9) | 406 | 531 | -5(9.8) | 0(6.1) |
|  | 16768 | 459 | 564 | 413 | 516 | -10(9.54) | -9(3.7) | 442 | 548 | -4(9.6) | -3(4.1) |
| X70 | 19348 | 479 | 587 | 469 | 557 | -2(6.95) | -5(6.8) | 501 | 616 | 5(24.4) | 5(2.7) |
|  | 19406 | 501 | 596 | 464 | 579 | -7(13.89) | -3(9.4) | 488 | 613 | -3(10.9) | 3(4.5) |

The material in this report is confidential and any reproduction or redistribution is prohibited.

